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The long-range correlations in the quantum spectra of a smooth Hamiltonian system are shown to be due to
classical periodic orbits of the corresponding classical system. This correspondence exists whether the physical

system is mostly regular, mixed, or mostly chaotic.
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The energy levels of a bound quantum Hamiltonian sys-
tem H(q,p) exhibit both short-range and long-range corre-
lations [1]. These correlations can be explained with the help
of the corresponding classical Hamiltonian system H(q,p)
when # is small [2]. The short-range correlations are generic
in nature and depend on whether the underlying classical
dynamics is regular or chaotic. For example, the nearest-
neighbor spacing distribution (NNS) of the energy levels
obeys Gaussian orthogonal ensemble (GOE) statistics if the
classical phase space is chaotic and obeys Poisson statistics
if it is regular [3]. A GOE behavior of the NNS statistic is
commonly used as a definition of quantum chaos when only
experimentally determined energy levels are available.

In contrast to the short-range correlations in the spectra,
the long-range correlations are nongeneric in nature and de-
pend on the particular form of the Hamiltonian under study.
Gutzwiller’s trace formula [4] describes semiclassically these
long-range correlations in terms of classical periodic orbits:

d,(E)= (1/7h)>, Acos[(1/h) S— (m/2) u], (1)
po

where d,;.(E) is the oscillating part of the density of states.
The sum is over all the classical periodic orbits, S is the
action of a particular orbit, x its Maslov index, and the am-
plitude .2 depends on its stability. To demonstrate these
long-range correlations in given spectra, one usually takes
the Fourier transform of the oscillating part of the density of
states d,;.(E) with respect to E [5—8]. The success of this
approach depends on how fast the period of the orbits change
as a function of the energy—this can be seen from Eq. (1) by
expanding the classical action S about some energy E *:

S(E)=S(E*)+ T(E*)(E—E*)+--- @)

so that the Fourier transform of d,,.(E) over an energy in-
terval about £* should give a distinct peak at 7,(E*) if the
period of the jth orbit is approximately constant on that en-
ergy interval. The widths of these peaks about the periods of
classical orbits are, however, inversely proportional to the
energy interval under consideration and consequently the
resolution of these peaks is poor for generic, nonscalable
systems. For special systems for which the action S scales
with energy, other Fourier transforms are usually more infor-
mative [9-14].

"Electronic address: dprovost@neutrino.phys.laurentian.ca

1063-651X/95/51(2)/841(4)/$06.00 51

In this paper we demonstrate the influence of classical
periodic orbits on the quantum spectra by Fourier transform-
ing Ad,; (E;%) with respect to 1/h. According to Eq. (1)
this must give peaks at the classical actions of the periodic
orbits. This has recently been done for the hydrogen atom in
a strong magnetic field [15-18]. They found that only the
periodic orbits that start and end at the nucleus gave peaks.
We shall demonstrate in this paper that for a more generic
Hamiltonian system all short periodic orbits are important
semiclassically. We studied the following Hamiltonian sys-
tem [6,8,19-21]:

H(q,p;a)=p%/2 + p%/2 + ux?/2 +(y— ax?/2)?, (3)

where ©£=0.1 and « is the coupling strength. A simple scal-
ing argument shows that a variation of the coupling strength
can be interpreted as keeping the coupling strength fixed and
varying #:

E,[#;al= (1/a?) E, [ha?1], 4)

where E,[#i;a] is the nth eigenvalue of H(q,—ifidg;a).
We henceforth fix the coupling constant at =1 and
vary fi.

Our system has the reflection symmetry x« —x. We
therefore restrict our quantum calculations to the even eigen-
values. For a given  we obtain the exact even quantal ei-
genvalues by using the basis ¢E,’f)(x) qbff Ny —x2/2), where
gbs,’f) and ¢ are harmonic oscillator wave functions appro-
priate for the bottom of the well [20]. We used 31 oscillator
states for the y direction and 101 even oscillator states for
the x direction.

The energy-smoothed even density of states is given by
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FIG. 1. Equipotential energy contours for £=0.02 to 0.14 in steps of
0.02. The vertical orbit, a symmetric rotation, and a symmetric libration at
E=0.14 are also shown.
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dD(Esh) =2 fAE—E™M),

i
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where the smoothing function f(E) is taken to be of the
Lorentzian type:

fE)=(e/m) [1/(E*+ €] (6)

and e=#/T*, with T* fixed. The oscillating part of the even
density of states is defined as

dSI N EsR)=d (B 1) —dS NE;h). (7)

S

2mhdT(E)=2 2 f("T)~————,————n cos n(—
ppo n=1 (‘%( )) 2| h

S
Xcos[g(ﬁ N _721 I‘Lm)] symmetrlc+ E f(

n=1
librations

where 7 is the period of the primitive periodic orbit and

f(t) = e YT", the Fourier transform of f(E). The first
term is the usual sum over all primitive periodic orbits and
their repetitions. The amplitude term is written out explicitly
in terms of the stability matrix .Z of the periodic orbit. The
second term is a sum over all the symmetric librations [23]
except for the orbit that lies on the symmetry line x=0. This
last orbit is a boundary orbit and its contribution [24] is the
third term in Eq. (9). The Fourier transform in 1/ of the
oscillating part of the even density of states must therefore
show additional peaks at odd multiples of half the action of
symmetric librations. Physically, these additional peaks can
be understood if we look at the classical motion in the fun-
damental domain [24], where it is seen that half of a sym-
metric libration becomes a full periodic orbit.

The classical dynamics and periodic orbits of the Hamil-
tonian given in Eq. (3) have been studied extensively [19—
21]. Figure 1 shows a contour plot of the potential
V(x,y)=H—% p? for energies from 0.02 to 0.14 in steps of
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FIG. 2. Energy E vs energy-scaled action S/E for periodic orbit families.
A solid line indicates where a family is stable and a dashed line when it is
unstable.
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We calculated the average even density of states df;;(E R)
semiclassically [20,22]. This has the advantage of telling us
when the actual numerical diagonalizations fail. We obtained

[20]
ﬁ2

12uE

Juh

(+) + _
d 2E

avg(E) =

E
22 1?

The first term is the usual Thomas-Fermi density of states.
Gutzwiller’s trace formula for the oscillating part of the
even density of states contains three parts:

)
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0.02. The vertical orbit, a symmetric rotation, and a symmet-
ric libration are also shown. The periodic orbits come in
one-parameter families. In Fig. 2 we plot the energy E as a
function of the energy-scaled action S/E for periodic orbit
families. A solid line indicates where a family is stable and a
dashed line when it is unstable. In Fig. 3 we plot £ as a
function of half of the energy-scaled action of periodic orbit
families that are also symmetric librations. In Fig. 4 we plot
the percentage of the Poincaré surface of section x=0 that is
regular as a function of energy. We see that the phase space
is mostly regular for energies up to about 0.04 and is mostly
chaotic for energies above 0.13. This transition from regular
to chaotic manifests itself quantum mechanically in the NNS
distribution. In Fig. 5 we plot the NNS distribution for
E=0.02 (top) and E=0.14 (bottom). For the top figure we
considered all energy levels with energies between 0.019 and
0.021 with A values ranging from 1/ =500 to 1/A = 1000 in
steps of 2. The resulting histogram fits the Poisson curve
well and this implies that the underlying classical phase
space at this energy is mostly regular. For the bottom figure
we considered all levels with energies between 0.139 and
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FIG. 3. E vs half of the energy-scaled action of symmetric librations.
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FIG. 6. Fourier transform in 1/ for (a) E=0.03, (b) E=0.05, (¢
E=0.07, (d) E=0.09.
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FIG. 8. Fourier transform in 1/% for (a) £=0.134, (b) E=0.136, (c) E=0.138, (d) E=0.140.

1/ =100 to 1/ =400 in steps of 0.5, and we set T*=40. In
Figs. 7 and 8 # ranged from 1/ =10 to 1/ =240 in steps of
0.5, and we set 7% =20. Whether we were in the mostly
regular, mixed, or mostly chaotic regime, the influence of the
periodic orbits on the spectra is clearly seen. The signature of
bifurcations of periodic orbits in the quantum spectra is also
evident. In Fig. 8 we show the occurrence of a peak at
around S/E=13.0 before a bifurcation actually occurs. This
premature peak is attributable to the occurrence of a ghost
periodic orbit [11,13]. The periodic orbit that finally appears

is a symmetric libration with energy-scaled action
S/E=26.0 and is depicted in Fig. 1. The large peak at
S/E=13.2 is due to the symmetric rotation shown in Fig. 1.
In conclusion, we showed that the spectra of a smooth
Hamiltonian system contain information about the periodic
orbits of the underlying classical system. This correspon-
dence is shown to exist whether the classical phase space is
mostly regular, mixed, or mostly chaotic. We also showed
that the quantum spectra reflect, through the NNS statistics,
whether the classical dynamics is regular or chaotic.
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